

European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir*

COST Action TD1105

1ST TRAINING SCHOOL

Universitat de Barcelona, Spain, 13 - 15 June 2013

Action Start date: 01/07/2012 - Action End date: 30/06/2016

2012 - 2013 (*Ongoing Action*)

University of Freiburg

COST is supported by the EU Framework Programme

Jürgen Wöllenstein

External Expert

<u>juergen.woellenstein@imtek.uni-freiburg.de</u>

Germany

Optical Gas Detection Methods

Absorption spectroscopy

 Molecule specific absorption of electromagnetic radiation at characteristic wavelengths

Measurement principle

Transmission Measurement

Absorption spectroscopy

THE ELECTRO MAGNETIC SPECTRUM

Absorption spectroscopy

- Absorption spectroscopy
 - UV / VIS
 - IR
 - Terahertz
 - Microwave range

IR based sensors are most relevant for air pollution measurements

Absorption of electromagnetic radiation

- Two Level System
- Absorption of photons
- Transition ground state → excited state
- Absorption for E₁-E₂=h·v
- Relaxation caused by
 - Fluorescence
 - Mechanical deactivation
- UV/VIS: electronic transitions
 - Interaction of light with valence electrons
- IR: Rotation and vibration transitions
 - Interaction of light with dipole moments of molecules

Absorption of electromagnetic radiation

- Molecules can fall back radiant or nonradiant from the excited state E₂ to the ground state E₁ – absorbed light quantum will be reemitted
- Radiative recombination is used by fluorescence spectroscopy
- IR spectroscopy is using the amount of energy which is transformed from kinetic energy by inelastic impacts
 The transformation of the energy difference (E₁-E₂) = h⋅n in translation energy results in a higher velocity of the colliding molecules
- Increase of velocity equivalent with increase of gas temperature
- Increase of temperature leads to thermo elastic expansion of the sample and therefore to an increase of pressure

Oscillation and Rotation spectra

Symmetrical stretching

Asymmetrical stretching

Scissoring

Rocking

Wagging

Twisting

Oscillation and Rotation spectra

- Oscillation and rotation modes (e.g. CO₂)
- Rotation modes

1/cm µm 0,7

- Oscillation modes
 - Symmetric stretching

1200 72

μm

1/cm

Asymmetric stretching

2349 4,26

667 14,99

Absorption of electromagnetic radiation

- Absorbed energy in sample (Lambert-Beer Law)
 - $I_{abs} = I_0 \cdot (1 exp(-\alpha \cdot L))$
 - With I₀ as irradiated intensity and L as sample length
- Absorption coefficient α of transition E₁ to E₂
 - $\alpha = \sigma \cdot (N_1 N_2)$
 - With σ as absorption cross section, N_1 and N_2 as occupation densities of the ground state E_1 and the excited state E_2

IR absorption of gases

- IR spectra of gases
- HITRAN spectra of H₂O (0,7 Vol%) CO₂ (1000 ppm) from 1-20 μm
- · "Atmospheric window"
- NDIR:
 - CH₄, CO₂: 3 5 μm
 - Others: $8-12 \mu m$

- Measuring principle
- IR-Radiation is emitted by the source
- Detector measures the IR-Radiation

- Measuring principle
- Radiation is emitted by the source
- Detector measures the IR-radiation
- Gas is absorbing IR-radiation

- Higher gas concentration results in a stronger absorption
- Lambert-Beer law $I_{abs} = I_0 \cdot exp(-c \cdot \epsilon \cdot L)$

Selectivity

- Simulation
 10 ppm CO / CO₂
- Absorption way 1 m
- Pressure 1 bar
- Temperature 296 K

HITRAN calculations of CO and CO₂ transmittance optical path 1m, pressure 1 atm, partial pressures 0.0001 atm, temperature 296K

Selectivity

- Simulation
 10 ppm CO / CO₂
- Path length 1 m
- Pressure 1 bar
- Temperature 296 K
- Filter at 4,1 4,4 μm

HITRAN calculations of CO and CO₂ transmittance optical path 1m, pressure 1 atm, partial pressures 0.0001 atm, temperature 296K

- Single channel sensor
- Radiation source
- Gas measurement cell
- Interference filter for wavelength selection
- Radiation detector

Examples of Sensors
Optical Gas Sensors for Medical and Safety Applications

Drägerwerk AG Research Unit

Single Channel Sensor

- + low weight, low production costs
- + no moving parts
- Prone to concentration drifts (dirt, lamp ageing)
- frequent zeroing required (U_{bright})

- Sensor with reference channel
- Radiation source
- Gas measurement cell
- Two interference filter for wavelength selection

Examples of SensorsOptical Gas Sensors for Medical and Safety Applications

Drägerwerk AG Research Unit

CO₂ Sensor for Intensive Care

additional optical channel: continuous measurement of I₀

Reference Channel

- + low drifting
- + collinear setup (beam splitter)
- + no moving parts
- detector adjustment (temperature behaviour, ageing)
- only one measurement channel (CO₂)

Measurement Wavelength: 4.3µm

Examples of SensorsOptical Gas Sensors for Medical and Safety Applications

Drägerwerk AG Research Unit

DRÄGER SAFETY • POLYTRON IR OCTOBER: 2003 • 19/27

Drägersafety

Infrared Carbon Dioxide Sensor for Automotive Applications

Dr. Ing. Michael Arndt

Sensor Development Robert Bosch GmbH

Email: Michael.Arndt@de.bosch.com

Automotive Electronics

AE/ESE2 | 3/16/2005 | ® Robert Bosch GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties.

Infrared Carbon Dioxide Sensor for Automotive Applications

Carbon Dioxide in Cars

Automotive Electronics

AE/SPE2 | 3/16/2005 | © Robert Bosch GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposuch as copying and passing on to third parties.

10

Infrared Carbon Dioxide Sensor for Automotive Applications

Spectroscopic Gas-Measurement

Automotive Electronics

AE/ESE2 | 3/16/2005 | © Robert Bosch GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties.

Infrared Carbon Dioxide Sensor for Automotive Applications

Climate Control Sensor (CCS)

Range: 0..3 vol.%

Resolution: <0.02 vol.%

Interface: digital or analog

Automotive Electronics

13

AE/SPE2 | 3/16/2005 | © Robert Bosch GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties.

Infrared Carbon Dioxide Sensor for Automotive Applications

Bosch Infrared Gasdetector

Automotive Electronics

AE/ESE2 | 3/16/2005 | © Robert Bosch GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposuch as copying and passing on to third parties.

14

Long path cell

- White cell (= optical long path cell)
- John White 1942
- Multiple reflections
- Three spherical mirrors with identical radius of curvature
- Good transmission
- Uncritical alignment

- Multiple reflections
- Three spherical mirrors with identic radius of curvature
- Good transmission
- Uncritical alignment

- Multiple reflections
- Three spherical mirrors with identic radius of curvature
- Good transmission
- Uncritical alignment

- Multiple reflections
- Three spherical mirrors with identic radius of curvature
- Good transmission
- Uncritical alignment

- Multiple reflections
- Three spherical mirrors with identic radius of curvature
- Good transmission
- Uncritical alignment

- Multiple reflections
- Three spherical mirrors with identic radius of curvature
- Good transmission
- Uncritical alignment

- Multiple reflections
- Three spherical mirrors with identic radius of curvature
- Good transmission
- Uncritical alignment

- Multiple reflections
- Three spherical mirrors with identic radius of curvature
- Good transmission
- Uncritical alignment

- Multiple reflections
- Three spherical mirrors with identic radius of curvature
- Good transmission
- Uncritical alignment

- Multiple reflections
- Three spherical mirrors with identic radius of curvature
- Good transmission
- Uncritical alignment

Photo-acoustics

- First description by Alexander Graham Bell 1880
- Energy supply with short flashes of light
 - → Temperature variation
 - → Pressure variation
 - → Measurement with a microphone

- Photo-acoustical spectroscopy (PAS)
- PAS uses the energy which is transformed into kinetic energy by inelastic impacts
- The transformation of the energy difference (E₁-E₂) = h·v in translation energy results in a higher velocity of the colliding molecules
- Increase of velocity equivalent with increase of gas temperature
- Increase of temperature leads to thermo elastic expansion of the sample and therefore to an increase of pressure

- Increase of velocity is equivalent with increase of gas temperature T
- For a sample which is approximately an ideal gas:

$$p \cdot V = n \cdot k \cdot T$$

with p being the pressure, n the number of particles and k the Boltzmann constant

- An increase of temperature leads with constant volume V (and density) to an increase of pressure p
 - → thermo elastic expansion

- An interruption of irradiation leads due to the diffusion of the molecules to a heat dissipation over the measurement cell
 → Pressure reduction to initial value
- Modulated irradiation results in a small periodic variation of pressure (typically 10⁻² to 10⁻¹ Pa) with the same frequency as the modulation of the radiation source
 - the photo-acoustic signal
- Detection of this acoustic wave with a microphone eliminates the background (atmospheric pressure) because only pressure variations are detected
- Microphone signal yields a a constant offset-free signal

Time course of the harmonic pressure variation in the measurement cell, the microphone voltage and the lock-in signal

- Resonant excitation with alternating light
- Often used with laser light sources
- Partially use acoustic resonators

- Resonant excitation with alternating light
- Often used with laser light sources
- Partially use acoustic resonators

Measurement Principle
Optical Gas Sensors for Medical and Safety Applications

Drägerwerk AG Research Unit

Standard Format Dräger RUN presentation.ppt

URAS (<u>Ultrarot-Absorptionsschreiber</u>)

Lehrer, Luft (1938)

acoustooptic / optopneumatic
Detector (target gas as a positive filter)

 $\Delta p = 0.1 \mu bar$, $\Delta x = 1 nm$, $\Delta C = 0.016 pF$ Full scale values: N₂O, CO₂: 100 ppm

Hydrocarbons, CO: 500ppm

- Measurement principle
- Single Mode Laser
- Wavelength adjustment
- Direct spectroscopy
- Open Path system
- Multireflexion cell
- Derivative spectroscopy
- Cavity-Ring-Down

Laser spectroscopy in basic research (University Cambridge)

Wavelength stabilisation of a laser

- Laser as selective light source
- Requirement for laser diodes:
- Single Mode: Only one wavelength
- Suitable Wavelength
- Wavelength adjustable

Surface-emitting laser diodes (VCSEL)

- Laser characterization
- Investigations regarding to electrical behavior and radiation power
- Voltage-Current characteristic
- Optical power as a function of current

- Laser characterization
- Adjustment regarding to laser substrate temperature

- Laser characterization
- Adjustment regarding to the laser current
- Record of spectra with different currents (T_{substrate}=20°C)
- Up to 3mA laser current few secondary modes
- Adjustment rate: 0,0625 nm/mA

Wavelenght stabilization of a laser

- 762 nm VCSEL on a two-step Peltier cooler
- With this setup temperature differences of more than 130K could be achieved. With a temperature tuning coefficients of 0,055nm/K this corresponds to a modehop-free tuning range of more than 7nm.

Wavelenght stabilization of a laser

On base current modulated saw tooth pulse with a frequency of 1100Hz, standard pressure, 298K

Cavity-Ring-Down Spectroscopy

Ring Down Cavity Spectroscopy Technique

First Developed by O'Keefe and Deacon Rev. Sci. Instr. 59, 2544 (1988) Theory: Romanini and Lehmann J. Chem. Phys. 99, 6287 (1993)

- Use a passive optical cavity formed from two high reflective mirrors (T~1-100 ppm)
- Excite cavity with a pulsed laser to 'fill' with photons
- Detect exponential decay of light intensity inside resonator
- •Decay rate reflects:
 - Loss due to mirrors (slowly changing with wavelengths)
 - Absorption of gas <u>between</u> mirrors

Cavity-Ring-Down Spectroscopy

Cavity Ring-Down Absorption

Absorption

Time

c : speed of light

L: length of cavity

R: mirror reflectivity

 σ : absorption cross section

N: number density

L_{eff}: effective pathlength

History of FTIR spectroscopy

- About 1800: F.W. Herschel discovers infrared radiation
- 1891: Development of the Michelson-Interferometer ("ether experiment")
- ~1900: Rayleigh: Calculation of the spectrum from an interferogram with Fourier transformation
- 1911: Rubens and Wood: First type of FT spectroscopy (two-plate quartz interferometer, long wave IR, but: calculation effort too big)
- 1953: Fellgett discovers multiplex advantage over grating spectrometer
- 1956: first long wave IR spectrum with Michelson-Interferometer
- 1964: First commercial FTIR spectrometer (Research and Industrial Instruments Company)
- 1965: Development of Fast Fourier Transformation algorithm (Cooley and Tukey) → significantly lower calculation effort

Lord Rayleigh

Today widely used and established method Well known manufacturer: Bruker, ThermoScientific

FTIR spectroscopy –measurement principle

Conventional IR Spectroskopy:

Fourier Transformation IR (FTIR) Spectroskopy:

FTIR spectroscopy - Interferometer

- Functionality of an interferometer
- Light wave is divided in two parts
- Two Waves run through paths with different length
 - → phase shift
 - → constructive or deconstructive interference

Schematic setup of a Michelson interferometer and resulting interferogram

FTIR spectroscopy - Interferometer

Polychromatic interference

- Spectrometer process the light of many wave lengths
 - → interference by every wave length
 - → superposition
- Intensity at detector as function of the mirror way x

$$I(x) = \int_{B} I(\widetilde{v}) \cos(2\pi \widetilde{v} x) d\widetilde{v}$$

$$\tilde{v} = Wellenzahl$$

$$B = Bandbreite$$

FTIR spectroscopy - FFT

Monochromatic Interference: constructive $n \cdot \lambda$ and destructive $(2n+1) \cdot \lambda/2$

$$I(x) = I_0 (1 + \cos(2\pi vx))$$
 Interferogramm

Continuos Spectrum: $-\infty \le \nu \le \infty$

$$I(x) = \int_{0}^{\infty} I(v)\cos(2\pi vx)dv \qquad \text{Interferogramm}$$

$$I(v) = \int_{0}^{\infty} I(x)\cos(2\pi vx)dx \qquad \text{Spectrum}$$

Fourier transformation of interferogramm of place- I(x) or time-domain I(t) into frequency-domain I(v) results inb spectrum of the substance

Only for limited intervals possible

FTIR spectroscopy - FFT

Continuous Fourier Transformation

$$\hat{x}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x(t)e^{-i\omega t} dt$$

$$\hat{x}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x(t)e^{-i\omega t}dt$$
 $x(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{x}(\omega)e^{i\omega t}d\omega$

Discreet Fourier Transformation

$$\hat{x}_k = \sum_{n=0}^{N-1} x_n e^{-i2\pi \frac{kn}{N}}$$

$$x_n = \frac{1}{N} \sum_{k=0}^{N-1} \hat{x}_k e^{i2\pi \frac{kn}{N}}$$

=> Sampling theorem should not be infringed

Fast Fourier Transformation

Fast Fourier Transformation (FFT) is an algorithm for fast calculation of the values of a discreet Fourier Transformation (DFT)

FTIR spectroscopy - FFT

Interferogramms of different spectra

- a- monochromatic wave
- b- three monochromatic waves
- c- continuos spectra
- d- broadband emitter

FTIR spectroscopy - Practice

Setup of an FTIR spectrometer

FTIR spectroscopy - Application

- Assignment of the signals
- Molecular formula: C₇H₈O
 → How looks the belonging molecular structure?

- Interpretation:
- 3400-3200 cm⁻¹: strong Peak → OH
- 3100 cm⁻¹: weak peak → unsaturated CH
- 2900 cm⁻¹: weak peak → saturated CH
- 2200 cm⁻¹: no unsymmetric triple bond
- 1720 cm⁻¹: no C=O group

Answer:

FTIR spectroscopy – Microspectroscopy

Advantages due to MOEMS technology

Replacement of the macroscopic mirror and its drive with an oscillating micro-mirror.

- Increased reliability and ruggedness.
- System miniaturization.
- Cost reduction.
- Ultra-rapid scan capability. Acquisition time of 0.2 ms for a single scan.

Example of MEMS based FTS:

a) Translatory mirror, b) Lamellar grating booth with in-plane-comb drive

Ouelle:

O. Manzardo, Ph.D. Thesis, Neuchatel, 2002

thilo.sandner@ipms.fraunhofer.de Spectrometer Workshop

Jena, 2008-03-13

Application example

Thank you for your attention

