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• Molecule specific absorption of electromagnetic radiation 

at characteristic wavelengths 
 

 

Transmission 

Measurement 
Measurement principle 

Absorption spectroscopy  
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Absorption spectroscopy 

Source: scheeline.scs.illinois.edu 
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Absorption spectroscopy 

• Absorption spectroscopy 

 

• UV / VIS 

• IR  

• Terahertz 

• Microwave range 

 

• IR based sensors are most relevant for air pollution 

measurements  
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Absorption of electromagnetic radiation 

• Two – Level System 

• Absorption of photons 

• Transition ground state → excited state 

• Absorption for E1-E2=h∙v 

• Relaxation caused by 

• Fluorescence 

• Mechanical deactivation 

• UV/VIS: electronic transitions 

• Interaction of light with valence electrons 

• IR: Rotation and vibration transitions 

• Interaction of light with dipole moments of molecules 

 

Ground state 
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Absorption of electromagnetic radiation 

• Molecules can fall back radiant or nonradiant from the excited 

state E2 to the ground state E1 – absorbed light quantum  will be 

reemitted 

• Radiative recombination is used by fluorescence spectroscopy 

• IR spectroscopy is using the amount of energy which is 

transformed from kinetic energy by inelastic impacts 

The transformation of the energy difference (E1-E2) = h·n in 

translation energy results in a higher velocity of the colliding 

molecules 

• Increase of velocity equivalent with increase of gas temperature 

• Increase of temperature leads to thermo elastic expansion of the 

sample and therefore to an increase of pressure 
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Oscillation and Rotation spectra 

Symmetrical stretching Asymmetrical stretching Scissoring 

Rocking Wagging Twisting 

http://en.wikipedia.org/wiki/File:Twisting.gif
//upload.wikimedia.org/wikipedia/commons/6/60/Scissoring.gif
//upload.wikimedia.org/wikipedia/commons/6/60/Scissoring.gif
//upload.wikimedia.org/wikipedia/commons/1/14/Modo_rotacao.gif
//upload.wikimedia.org/wikipedia/commons/8/84/Wagging.gif
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Oscillation and Rotation spectra 

• Oscillation and rotation modes (e.g. CO2) 

• Rotation modes          1/cm µm 

                0,7 

 

• Oscillation modes         1/cm  µm 

• Symmetric stretching        1388 7,2 

 

• Asymmetric stretching       2349 4,26 

 

• Bending vibration         667 14,99 
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Absorption of electromagnetic radiation 

• Absorbed energy in sample (Lambert-Beer Law) 

• Iabs= I0 · ( 1 – exp ( - α · L ) )  

• With I0 as irradiated intensity and L as sample length 

• Absorption coefficient α of transition E1 to E2  

• α=σ·(N1-N2) 

• With σ as absorption cross section, N1 and N2 as occupation 

densities of the ground state E1 and the excited state E2 
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IR absorption of gases 

• IR spectra of gases 

• HITRAN spectra of  

H2O (0,7 Vol%)  

CO2 (1000 ppm) from 1-20 µm 

• “Atmospheric window” 

• NDIR:  

• CH4, CO2:  3 – 5 µm 

• Others:   8 – 12 µm 
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Measuring principle of NDIR systems 

• Measuring principle 

• IR-Radiation is emitted by the source 

• Detector measures the IR-Radiation 

 

Source Detector 

  

Signal 
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Measuring principle of NDIR systems 

• Measuring principle 

• Radiation is emitted by the source 

• Detector measures the IR-radiation  

• Gas is absorbing IR-radiation  

 

Source Detector 

  

Signal 
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Measuring principle of NDIR systems 

• Higher gas concentration results in a stronger absorption 

• Lambert-Beer law Iabs= I0 · exp ( - c · e · L )  

 

Source Detector 

  

Signal 
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Measuring principle of NDIR systems 

• Selectivity 

• Simulation  

10 ppm CO / CO2 

• Absorption way 1 m 

• Pressure 1 bar 

• Temperature 296 K 
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Measuring principle of NDIR systems 

• Selectivity 

• Simulation  

10 ppm CO / CO2 

• Path length 1 m 

• Pressure 1 bar 

• Temperature 296 K 

• Filter at 4,1 – 4,4 µm 
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Measuring system setup 

• Single channel 
sensor 

• Radiation source 

• Gas measurement cell 

• Interference filter for 
wavelength selection 

• Radiation detector 
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Measuring system setup 
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Measuring system setup 

• Sensor with reference channel 

• Radiation source 

• Gas measurement cell 

• Two interference filter for wavelength selection 
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Measuring system setup 
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Measuring system setup 
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Application examples 
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Application examples 
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Application examples 
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Application examples 
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Long path cell 

• White cell (= optical long path cell) 

• John White 1942 

• Multiple reflections 

• Three spherical mirrors with identical 

radius of curvature 

• Good transmission 

• Uncritical alignment 
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White cell – functional principle 

• Multiple reflections 

• Three spherical mirrors 

with identic radius of 

curvature 

• Good transmission 

• Uncritical alignment 

 

 

Source: Jean-Franc¸ ois Doussin, Ritz Dominique, Carlier Patrick, 

Multiple-pass cell for very-long-path infrared spectrometry, 

1999 Optical Society of America 
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White cell – functional principle 

• Multiple reflections 

• Three spherical mirrors 

with identic radius of 

curvature 

• Good transmission 

• Uncritical alignment 
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Multiple-pass cell for very-long-path infrared spectrometry, 
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White cell – functional principle 

• Multiple reflections 
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White cell – functional principle 

• Multiple reflections 

• Three spherical mirrors 
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White cell – functional principle 

• Multiple reflections 

• Three spherical mirrors 

with identic radius of 

curvature 

• Good transmission 

• Uncritical alignment 
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White cell – functional principle 

• Multiple reflections 

• Three spherical mirrors 
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White cell – functional principle 

• Multiple reflections 
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White cell – functional principle 

• Multiple reflections 
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White cell – functional principle 

• Multiple reflections 

• Three spherical mirrors 

with identic radius of 

curvature 

• Good transmission 

• Uncritical alignment 

 

 

Source: Jean-Franc¸ ois Doussin, Ritz Dominique, Carlier Patrick, 

Multiple-pass cell for very-long-path infrared spectrometry, 

1999 Optical Society of America 
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Photo-acoustics 

• First description by Alexander 

Graham Bell 1880 

• Energy supply with short 

flashes of light 

 → Temperature variation 

 → Pressure variation 

 → Measurement with a    

      microphone 
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Photo-acoustical gas measurement 

• Photo-acoustical spectroscopy (PAS) 

• PAS uses the energy which is transformed into kinetic energy 

by inelastic impacts 

• The transformation of the energy difference (E1-E2) = h·n in 

translation energy results in a higher velocity of the colliding 

molecules 

• Increase of velocity equivalent with increase of gas temperature 

• Increase of temperature leads to thermo elastic expansion of 

the sample and therefore to an increase of pressure 
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Photo-acoustical gas measurement 

• Increase of velocity is equivalent with increase of gas 

temperature T 

• For a sample which is approximately an ideal gas: 

  p • V = n • k • T 

 with p being the pressure, n the number of particles and k the Boltzmann 

constant 

• An increase of temperature leads with constant volume V (and 

density) to an increase of pressure p  

→ thermo elastic expansion 

 

  

 



40 

Photo-acoustical gas measurement 

• An interruption of irradiation leads due to the diffusion of the 

molecules to a heat dissipation over the measurement cell  

→ Pressure reduction to initial value 

• Modulated irradiation results in a small periodic variation of 

pressure (typically 10-2 to 10-1 Pa) with the same frequency as 

the modulation of the radiation source  

– the photo-acoustic signal 

• Detection of this acoustic wave with a microphone eliminates 

the background (atmospheric pressure) because only pressure 

variations are detected 

• Microphone signal yields a a constant offset-free signal 
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Photo-acoustical gas measurement 

Time course of the harmonic pressure variation in the 

measurement cell, the microphone voltage and the lock-in signal 
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Photo-acoustical gas measurement 

Lightsource 

Chopper 

Measurement 

section 

Cuvette with 

measurement gas 
Microphone 

• Resonant excitation with alternating light 

• Often used with laser light sources 

• Partially use acoustic resonators 
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Photo-acoustical gas measurement 

• Resonant excitation with alternating light 

• Often used with laser light sources 

• Partially use acoustic resonators 

Lightsource 

Chopper 

Measurement 

section 

Cuvette with 

measurement gas 
Microphone 
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Photo-acoustical gas measurement 
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Laser spectroscopy 

• Measurement principle 

• Single Mode Laser 

• Wavelength adjustment 

• Direct spectroscopy 

• Open Path system 

• Multireflexion cell 

• Derivative spectroscopy 

• Cavity-Ring-Down 
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Laser spectroscopy 

Laser spectroscopy in basic research (University Cambridge) 
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Laser spectroscopy 
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Wavelength stabilisation of a laser 

• Laser as selective light source 

• Requirement for laser diodes: 

• Single Mode: Only one wavelength 

• Suitable Wavelength 

• Wavelength adjustable 

 

Surface-emitting laser diodes (VCSEL) 
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Laser spectroscopy 

• Laser characterization 

• Investigations regarding to 

electrical behavior and 

radiation power 

• Voltage-Current 

characteristic 

• Optical power as a function 

of current 
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Laser spectroscopy 

• Laser characterization 

• Adjustment regarding to 

laser substrate 

temperature 
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Laser spectroscopy 

• Laser characterization 

• Adjustment regarding to 

the laser current 

• Record of spectra with 

different currents 

(Tsubstrate=20°C) 

• Up to 3mA laser current 

few secondary modes 

• Adjustment rate:  

0,0625 nm/mA 
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Wavelenght stabilization of a laser 

• 762 nm VCSEL on a 

two-step Peltier cooler 

• With this setup 

temperature differences 

of more than 130K could 

be achieved. With a 

temperature tuning 

coefficients of 0,055nm/K 

this corresponds to a 

modehop-free tuning 

range of more than 7nm. 
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Wavelenght stabilization of a laser 

Ramp 

VCSEL 

Gaszelle 

Det 

0,45 0,50 0,55 0,60 0,65 0,70 0,75 0,80 0,85 
0,0 

0,5 

1,0 

1,5 

2,0 

2,5 

3,0 

3,5 

4,0 

4,5 

  Transmission at 14,9°C / 3,8mA 

 N 2         <2% O  2 

 Air     20% O 2 

 O 2       40% O 2 

D
e

te
c

to
r 

v
o

lt
a

g
e

 /
 V

 

Time / ms 

I 

t 

• On base current modulated saw 

tooth pulse with a frequency of 

1100Hz, standard pressure , 298K 



54 

Cavity-Ring-Down Spectroscopy 
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Cavity-Ring-Down Spectroscopy 
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History of FTIR spectroscopy 

• About 1800: F.W. Herschel discovers infrared radiation 

• 1891: Development of the Michelson-Interferometer (“ether experiment”) 

• ~1900: Rayleigh: Calculation of the spectrum from an interferogram with 

Fourier transformation  

• 1911: Rubens and Wood: First type of FT spectroscopy (two-plate quartz 

interferometer, long wave IR, but: calculation effort too big) 

• 1953: Fellgett discovers multiplex advantage over grating spectrometer 

• 1956: first long wave IR spectrum with Michelson-Interferometer 

• 1964: First commercial FTIR spectrometer (Research and Industrial 

Instruments Company) 

• 1965: Development of Fast Fourier Transformation algorithm (Cooley and 

Tukey) →significantly lower calculation effort 

 

• Today widely used and established method 

Well known manufacturer: Bruker, ThermoScientific 
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FTIR spectroscopy –measurement principle 

Conventional IR Spectroskopy: 

IR source Monochromator Probe Detector Signal processing 

IR source Interferometer Probe Detector 

Fourier Transformation IR (FTIR) Spectroskopy: 

Signal processing 
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FTIR spectroscopy - Interferometer 

• Functionality of an interferometer 

• Light wave is divided in two parts 

• Two Waves run through paths with 

different length 

→ phase shift 

→ constructive or deconstructive 

interference 

Schematic setup of a Michelson 

interferometer and resulting 

interferogram 
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FTIR spectroscopy - Interferometer 

• Polychromatic interference 

• Spectrometer process the light 

of many wave lengths 

→ interference by every wave 

length 

→ superposition 

• Intensity at detector as function 

of the mirror way x 
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FTIR spectroscopy - FFT 

Only for limited intervals possible 
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FTIR spectroscopy - FFT 

Continuous Fourier Transformation 

Discreet Fourier Transformation 

Fast Fourier Transformation 

=> Sampling theorem should not be infringed 

Fast Fourier Transformation (FFT) is an algorithm for fast calculation of the 

values of a discreet Fourier Transformation (DFT) 
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FTIR spectroscopy - FFT 

Interferogramms of different 

spectra 

a- monochromatic wave 

 

b- three monochromatic waves 

 

c- continuos spectra 

 

d- broadband emitter 
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FTIR spectroscopy - Practice 

Setup of an FTIR spectrometer 
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FTIR spectroscopy - Application 

• Assignment of the signals 

• Molecular formula: C7H8O 

→ How looks the belonging 

molecular structure? 

 

• Interpretation: 
• 3400-3200 cm-1: strong Peak → OH  

• 3100 cm-1: weak peak → unsaturated CH  

• 2900 cm-1: weak peak → saturated CH 

• 2200 cm-1: no unsymmetric triple bond 

• 1720 cm-1: no C=O group 

 

Answer: 
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FTIR spectroscopy – Microspectroscopy 



Application example  
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Thank you for your attention 


